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I.  INTRODUCTION 

In a recent experiment at Ballistic Research Laboratory (BRL), a 
need developed for a transducer to measure pressure in confined explosive 
charges which were reacting in a non-detonative fashion.  The transducers 
were to be mounted internally in contact with the explosive and be able 
to measure pressures from .2 to 1.0  GPa with rise times of 100 to 300 
ysec.  In addition, the gages were required to monitor the pressure pro- 
file during case expansion. 

A manganin piezo-resistive foil gage was selected to monitor the 
pressure pulse. Manganin is a copper-manganese-nickel alloy whose resis- 
tance has a high sensitivity to pressure changes.  Manganin gages have 
been used extensively in the past to measure pressures in planar shock 
waves and in static situations where the gage cannot deform.  Wackerle1 , 
among others, has described techniques for using manganin gages.  Typi- 
cally, the gage consists of a thin foil grid with a thickness of about 
0.013 mm, a length and width of 3 to 6 mm, and a resistance of about 50 
ohms.  Various calibrations (see Reference 1] have shown that the resis- 
tance of the gage increases in a nearly linear fashion with pressure; i.e., 

A_R ■= CP 
R 

where R is the gage resistance, AR is the increase in resistance caused 
by pressure,C is called the gage coefficient, and P is Pressure in GPa, 
C is approximately 0.023 ohms/ohm/GPa for static pressures and approximately 
0.027 ohms/ohm/GPa for shock waves. 

In our experiments, deformation of the gage frequently occurs and 
the resistance of the gage is affected by strain as well as pressure. 
If the strain on the manganin gage is measured independently and if the 
dependence of resistance on strain is known, then the pressure can be 
determined.  Rosenberg2 suggested using a constantan gage in conjunction 
with a manganin gage. The resistance of constantan is nearly independent 
of pressure, and the gage measures strain only.  If the two gages are 
mounted so that each sees the same strain, the pressure can be determined 
as long as the strain coefficient of manganin is known. 

The resistance of a foil element varies with strain as follows: 

AR   „ AL 

1Waakerle}  J.3  Johnson,  J.   0.,   and Halleck,  P.  M.,   "TPvooeotile  Velocity 
Measurements and Quartz and Manganin Gage Pressure Determinations in Gas 
Gun Experiments," LASL 5844,   1975 

2Rosenberg,  J.,   "Development of a Piezo-Resistant Transduce to Measure 
Stress-Time Output of Small Detonators," Report by Stanford Research 
Institute to Pioatinny Arsenal Contract DAAA21-71-C-0845 



where K is strain coefficient and L is the length of the gage.  Unfor- 
tunately, the strain coefficient of manganin appears to depend on the 
conditions under which the measurement is made.  It has been reported 
in the past3, that manganin has a strain coefficient of 0.47 under static 
conditions at atmospheric pressure, but Charest4 determined a strain 
coefficient of 2.0 for manganin under shock conditions.  In order to 
use Rosenberg's technique, we had to determine how the strain coeffi- 
cient of manganin varies with stress and strain.  In this report, we 
describe an experimental effort to accomplish this objective. 

II.  DESCRIPTION OF EXPERIMENT 

A.  Test Setup. 

To determine the strain sensitivity of a manganin gage at low strain 
rates and atmospheric pressure, a manganin and a constantan gage (3.2 mm 
on a side) were mounted on a cantilever beam and the beam was deflected 
at varying rates.  A sketch of the arrangements is shown in Figure 1. 
Experiments at higher strain rates and pressures were conducted using the 
apparatus in Figure 2.  Pressure is applied to the small piston (19 mm 
in diameter) from a larger piston which is driven by burning gun powder 
in a large chamber. This arrangement provides a pressure amplification of 
16 times which results in pressures as high as 0.5 GPa on the gages.  A 
dual manganin/constantan gage. Figure 3, is cemented to the bottom of a 
3.2 mm thick steel plate.  As the piston moves in, the steel plate strains 
and applies pressure to all gages.  Pressure is transferred to the bottom 
gage on the anvil by cerrobend, a soft, high density material similiar 
to Wood's metal.  The cerrobend was generally, but not always,  precom- 
pressed in order to obtain higher pressure at the same value of strain. 
The anvil gage does not deform, and the change in its resistance provides 
an accurate measure of pressure.  The pressure on the anvil gage is assumed 
to be the same as on the dual gage and the strain on the manganin portion 
of the dual gage is assumed to be the same as on the constantan portion. 
The strain coefficient is determined from the following equation: 

K ' 2 I < "5 ' » - ' T ' «.  1 / 
AR 

mp '   / R ' C 

where R is the resistance on the gage and the subscripts m, mp, and C 
stand for the manganin anvil gage, the manganin portion of the dual gage. 

^deForest,  A.   V.,   "As reported in Strain Gage Techniques," Murray and Stein, 
Mass Institute Technology,   1962 

hCharest,  J.,   Dynasen,   Inc.,   "As reported in Strain-Compensated Stress Gage 
Development," Lookheed Missiles and Space Co.,   LNSC-D506298 
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Figure   2.     Apparatus  Used   to  Apply   Stress  and   Strain 
Simultaneously  to  a  Manganin Gage 
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and the constantan portion of the dual gage.  To vary strain rates, four 
different pistons were utilized, having radii of curvature of 9.5, 16, 
19, and 22 mm on the bottom end. 

B.  Data Acquisition System. 

In order to produce high level signals from our pressure and strain 
gages, pulsed power supplies (K-Line KCGS-2HV) were utilized.  By pulsing 
the gages, it is possible to run them at higher current levels and con- 
sequently obtain higher signal-to-noise ratios.  The active gage was used 
in one arm of a four-arm bridge circuit which was pulsed with 75 volts for 
a duration of 12.0 milliseconds. During this time, pressure and strain were 
applied. To minimize the effects of gage heating, the other three arms 
consisted of inactive gages. 

The other components in our system included three signal conditioning 
amplifiers (Tektronix A502), a wide-band tape recorder (Honeywell Model 
96), and a fibre-optics oscillograph recorder (Honeywell Model 1858) 
Figure 4. 

III.  RESULTS 

The results of two cantilever beam tests are shown in Figures 5 
to 8. For each shot, the figures give the strain coefficient as a 
function of strain and time and the strain as a function of time. 

Results of three activator shots with precompressed cerrobend are 
shown in Figures 9 to 14.  Each shot had a different radius of curvature, 
and these are identified in the figure captions.  The figures show the 
strain coefficient as a function of strain, pressure as a function of 
strain, and strain as a function of time.  Figures 15 and 16 show the 
same data for a shot with a 22 mm radius of curvature and unprecompressed 
cerrobend. This permitted considerable strain to occur at low pressure. 
Figures 17 and 18 give results from a shot with 3.2 mm gages and a 19 mm 
radius of curvature. 

IV.  DISCUSSION 

For small strains, all of our tests show that the strain coefficient 
for manganin is about .67 as opposed to the .47 value which has been reported 
(See Reference 3). The manufacturer of our gages, Micro-Measurements, 
Inc., has confirmed the higher value. Above 0.1 percent strain, the 
strain factor gradually increases to a value between 1.8 and 2.0.  The 
value of 2 is expected for a material in the plastic state which maintains 
constant volume and resistivity as it deforms. This can be seen from the 
following argument. The change in resistance with length is determined 
from: 

12 
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R ^ A ' 

where R is resistance, p is resistivity, i  is the length of the gage and 
A is the cross sectional area. Differentiating and assuming that resis- 
tivity and volume (the product of I and A) are constant, gives the fol- 
lowing relation: 

dR  9 d^ 
R     £ ' 

which implies that the strain coefficient should be 2.  The constant 
volume assumption should be valid when the gage is straining plastically, 
but it is not valid in the elastic regime.  Data provided by Mirco- 
Measurements, Inc indicate that the elastic limit of manganin occurs at 
about 0.2 percent strain. Mixed elastic-plastic behavior probably extends 
to higher strains, but it is reasonable to expect that the constant volume 
assumption will hold for large strains.  In the elastic region, resis- 
tivity varies because the interatomic spacing is changing.  In the plastic 
region, interatomic spacing should be constant, but resistivity may still 
change due to the formation of imperfections in the metal. However, it 
is reasonable to suppose that resistivity will reach a constant value 
for large strains, and for large strains the strain coefficient should 
approach the value of 2. 

In the cantilever beam tests, the strain coefficient approached 2 
at about 2 percent strain.  In the activator tests with 6.4 mm gages, 
the transition was more rapid, and the strain coefficient reached a value 
of 1.8 at about 0.5 percent strain and increased slowly after that.  A 
single activator test with a 3.2 mm gage looked more like the cantilever 
beam tests.  It appears that a strain coefficient of 2 is reasonable for 
experiments where the strain is 2 percent or greater.  Between 0.1 and 
2.0 percent strain, there is an uncertainty in the value which should be 
used. We have not been able to explain the variation in the data between 
0.1 and 2.0 percent strain in terms of pressure or strain rate, but our 
data is not sufficient to draw any firm conclusions in this regard.  It 
is tempting to ascribe the more rapid rise of the strain coefficient in the 
activator experiments to the higher pressure in these experiments. All 
of our data are consistent with the observation that when strain is greater 
than 0.5 percent and pressure is greater than 0.1 GPa.  The strain co- 
efficient is between 1.8 and 2.0. However, a single activator shot was 
performed with unprecompressed cerrobend behind the 3.2 mm plate (see 
Figure 15).  In this experiment, considerable strain occurred before there 
was any significant pressure, but the strain coefficient as a function of 
strain increased nearly as rapidly as it did in the other activator shots. 
This indicates that some factor other than pressure may be responsible for 
the difference between the cantilever beam tests and the activator tests. 
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V.  CONCLUSIONS 

The strain coefficient of manganin appears to be about 0.67 for 
strains which are less than 0.1 percent and 2 for strains above 2 percent, 
In these regions of strain, the manganin - constantan combination gage 
appears to be useful. More work is needed to characterize the strain 
coefficient of manganin between 0.1 percent and 2 percent strain. 
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